Измерение параметров изоляции

Страница 1

Сопротивление изоляции — это параллельно включенное с токоведущей частью (жилой кабеля) сопротивление. Абсолютной разницы между диэлектрическим и резистивным состояниями нет, потому что в зависимости от условий одно и то же вещество может быть и диэлектриком и резистором. Основное условие, разграничивающее поведение вещества на резистивное и диэлектрическое, основано на понятии максвелловского времени диэлектрической релаксации, и простейшая схема замещения диэлектрика представляет собой конденсатор с параллельным сопротивлением (рис. 3.1).

Рисунок 3.1 – Простейшая схема замещения диэлектрика

Реальные электроизоляционные конструкции далеко не всегда состоят из однородных диэлектриков. Они могут содержать композицию из разных диэлектриков или просто иметь границу раздела. Даже в этом случае появляются новые особенности электропроводности, в частности, следует учитывать не только проводимость самих диэлектриков, но и границ раздела. Само по себе наличие границы не меняет проводимость конструкции, однако поверхность неизбежно содержит химически активные элементы. В контакте с воздухом поверхность обогащается веществами, содержащимися в воздухе. Известно, что даже в контакте с чистым воздухом на поверхности адсорбируется вода, например, на поверхности окислов может содержаться до 100 молекулярных слоев воды. Возникает поверхностная проводимость, т.е. проводимость, связанная с появлением и движением носителей заряда по поверхности (рис. 3.2) [11].

Рисунок 3.2 – Схема замещения диэлектрика с поверхностной проводимостью

Для учета сопротивления поверхностной проводимости в мегомметрах MIC-1000, MIC-2500, MIC-5000 и MIC-3 используется метод тройного зажима — высоковольтный разъем имеет вывод «средней точки» — «E». При его использовании происходит корректировка результата с учетом токов поверхностной проводимости. Наглядным примером является измерение сопротивления изоляции между экраном и одной из жил кабеля (рис. 3.3).

Рисунок 3.3 – Измерение сопротивления изоляции методом тройного зажима

Черным цветом показана металлическая фольга вокруг изоляции измеряемой жилы. В случае неравенства токов утечки IR-E и IE-COM имеем случай с поверхностной проводимостью по границе раздела.

Сопротивление изоляции RISO характеризует сквозной ток утечки Iскв (RISO=Uприл/Iскв). Сквозной ток Iскв (ток утечки) протекает по диэлектрику под воздействием постоянного напряжения и обусловлен наличием в диэлектриках свободных носителей заряда различной природы.

В момент включения постоянного электрического поля через диэлектрик электрического конденсатора протекает ток смещения — Iсм, обусловленный быстрыми видами поляризаций.

В неполярных однородных диэлектриках затем устанавливается ток сквозной проводимости — Iскв. В полярных и неоднородных диэлектриках протекает также ток абсорбции — Iабс, вызываемый активными составляющими токов, связанных с установлением замедленных (релаксационных) поляризаций (рис. 3.4).

Рисунок 3.4 – Изменение тока в зависимости от времени приложения постоянного напряжения

Для исключения протекания больших токов на начальном этапе измерения, мегомметры современного исполнения ограничивают величину протекающего тока, тем самым исключая возможные повреждения изоляции. Выходной ток ограничивается на уровне 1 мА. На рис. 3.5 представлены параметры мегаомметров фирмы Sonel [7] при измерении сопротивления изоляции.

Рисунок 3.5 – Параметры современных мегаомметров

По мере заряда емкости измеряемого объекта (постоянным током), напряжение на зажимах мегомметра увеличивается (линейно). Затем устанавливается рабочая точка — напряжение достигает заданного значения и ток стабилизируется (данный ток является сквозным током диэлектрика Iскв).

Накопленный в процессе измерения заряд является источником потенциальной угрозы, и по окончании измерений приборами Sonel, автоматически разряжается (через внутренний резистор). Измерения проводятся под постоянным напряжением, чтобы минимизировать влияние емкости на результат измерения. Способ выполнения измерений сопротивления изоляции, а также требуемые измерительные напряжения описаны в ГОСТ Р 50571.16-99 и IEC 60364-6-61.

С точки зрения эксплуатации, состояние изоляционного материала характеризуется двумя коэффициентами — коэффициент абсорбции (Dielectric Absorption Ratio — DAR) и коэффициент поляризации (Polarization Index — PI).

Коэффициент абсорбции Кабс характеризует влажность изоляционного материала. Коэффициент абсорбции — это отношение сопротивлений, измеренных мегомметром через 60 секунд с момента приложения напряжения (R60) и через 15 секунд после начала приложения испытательного напряжения от мегомметра (R15):

Страницы: 1 2 3 4

Разделы

Copyright © 2024 - All Rights Reserved - www.transpovolume.ru